B.Sc 1st Sem DSC (Phy. Sci.) Th.+Lab &SEC Lab

Name of	Period	C (Phy. Sci.) Th.+Lab &SEC Lab	T
Assistant	1 er iou	Topics to be covered	Assignments/
Professor			Test
LAXMIKANT	Up to 15th	Unit-1	,
	Aug	Rotational Dynamics:Rigid body, Moment of Inertia, Radius of	
	rug	Gyration. Torque. Angular	'
		momentum,Rotational kinetic energy,law of conservation of angular	100
	,	momentum.theorem of perpendicular and parallel axis(with proof)	
		DSC Experiment: Measurement of Length (or diameter)using Vernier calliper and Screw Gauge.	
		SEC Experiment:- To use Multimeter for measuring Resistance.A.C.and	
		D.C. Voltage and Current.	
	16 th	Moment of Inertia of Ring.Disc.solid cylinder.hollow	
		cylinder, solid sphere, hollow sphere, Spherical Shell, solid bar of rectangular	4
	Aug to	cross section. Moment of Inertia of Fly wheel, Moment of inertia of an irregular	
	31 th	body, acceleration of a body rolling down on an inclined plane.	
	Aug	DSC Experiment: - Measurement of Length (or diameter) using Travelling	
•	11145	Microscope.	
		SEC Experiment:- Determination of Impedance of an A.C.circuit and its verification.	
	1st Sep to	verification. Unit-2	
		Elasticity:Elasticity,Stress and Strain,Hook's Law,Elastic constants and their	Assignment
	15 th Sep	relations. Poisson's	3
		ratio, Torsion of cylinder and twisting couple. Determination of Coefficients of	
		inodulus of rigidity for the material of wire by Maxwell's needle.	2
		DSC Experiment:- Moment of Inertia of a Fly Wheel.	77
		SEC Experiment:- Frequency of A.C.mains using an electromagnet and Sonometer.	•
	16 th Sep	Bending of beam (bending moment and its magnitudes).	
		Cantilever and centrally loaded beam, Determination of Young's modulus for the	
	to 30 th	inaterial of the	
	Sep	beam and Elastic constants for the material of the wire by Searle's method.	
	_	DSC Experiment:- Moment of Inertia of irregular body using a Torsion	
	_	Pendulum.	
	1st Oct to	SEC Experiment:- Frequency of A.C.mains by using Electrical vibrator. Unit-3	
	1	Theory of Relativity:Reference frames,Inertial and non-Inertial frames of	Mid Term
	15 th Oct	references (ialilean Transformation, Galilean Invariance and principle of	Exam
		Newtonian relativity.	DAMIII
		DSC Experiment: Modulus of rigidity of material of wire by Maxwell's Needle.	¥ .
		SEC Experiment:- To study series LCR circuit and calculation of Q factor	1
	16th Oct	Michelson-Morley's	
		experiment and its findings. Postulates of special theory of	*
	10 31	relativity.Lorentz.Transformations.	,
	Oct	Length contraction, Time Dilation and Twin Paradox, velocity addition	
2		theorem, Variation of mass with velocity. Mass Energy equivalence.	
		DSC Experiment:- Elastic constant by Searle's method. SEC Experiment:- To study Parallel L CR girguit and calculation and colors.	.*
	1 st Nov to	SEC Experiment:- To study Parallel LCR circuit and calculation of Q factor Revision of all theory syllabus	
		DSC Experiment:- To compare Moment of Inertia of a solid Sphere, Hollow	
	till Exam	Sphere and solid Disc of same mass	
		with the help of Torsion Pendulum.	
, •1		SEC Experiment:- To obtain the wave form of AC mains supply using a cathode	
		ray oscilloscope.	

B.Sc 1st Sem MIC(Life Sci.)Th.

Up to 15th Aug		Test
-		1 est
Aug	Unit-1	
•	Mechanics of single and system of particles, Conversion law of linear momentum	
16 th Aug to 31 th	Angular momentum and mechanical energy for a particle and a system of particles.	
Aug		
1st Sep to	Centre of Mass and equation of motion.	Assignment
15 th Sep		rissignment
16 th Sep to 30 th Sep	Unit-2 Degrees of freedom and Generalized coordinates, Transformation equations	
1 st Oct to 15 th Oct	Generalized Displacement, Velocity, Acceleration, Momentum	Mid Term Exam
16 th Oct to 31 th Oct	Force and Potential, Hamilton's variational principle, Lagrange's equation of motion from Hamilton's principle, Linear Harmonic oscillator. Simple pendulum, and Atwood's machine.	
1 st Nov to till Exam	Revision of all theory syllabus	
		7 7 112 23

B.A 1st Sem MDC (Th.+Lab)

Name of	Period	Topics to be covered	Assignments/
Assistant Professor	:		Test
LAXMIKANT	Up to 15th Aug	Unit-1 Physical quantities-fundamental and derived, system of units, Experiment:- To measure the diameter of a solid sphere and cylindrical body by using vernicr calliper.	
	16 th Aug to 31 th Aug	need of measurement fundamental derived units, Experiment: - To measure the volume of the given rectangular block by using vernier calliper.	
	1 st Sep to 15 th Sep	dimensions of physical quantities, dimensional formulae. Experiment: To measure the internal diameter and depth of a given beaker and hence finds its volume.	Assignment
	16 th Sep to 30 th Sep	Unit-2 Scalar and vector quantities, rest and motion, Motion of objects in one.two and three dimensions with examples,. Experiment:- To measure the diameter of a given wire by using screw gauge.	
	1 st Oct to 15 th Oct	concept of position, distance, displacement, speed, velocity average and instantaneous speed, Experiment:- To measure the thickness of a given sheet by using screw gauge.	Mid Term Exam
	16 th Oct to 31 th Oct	average and instantaneous velocity and acceleration, uniform and non-uniform motion with examples. Experiment:- To measure the radius of curvature of a given spherical surface by a spherometer.	
	1st Nov to till Exam	Revision of all syllabus	

B.Sc 3rd Sem DSC(Phy. Sci.)Th.+Lab & SEC(Phy. Sci.) Lab

Name of	Period	Topics to be covered	Assignments/
Assistant			
Professor			Test
LAXMIKANT	Lin to 15th	Unit-1	
		Interference by Division of Wave front: Young's double slit	
	Aug	experiment, Coherence. Conditions of interference. Fresnel's biprism and its	• ,
		applications to determine the wavelength of sodium light and thickness of a	
		mica sheet, phase change on reflection.	2
		DSC Experiment: - To determine Refractive index of the material of a prism using sodium source.	
_		SEC Experiment:- Verification and interpretation of truth table for	2
		AND,OR,NOT gates	'
,		Verification and interpretation of truth table for NAND gate	
	16 th Aug	Interference by Division of Amplitude:Plane parallel thin film.production of	
	to 31 th	colours in thin films.	
		Interference due to transmitted light and reflected light, wedge shaped film. Newton's rings and its	
	Aug	applications.	
.1		DSC Experiment:- To determine the dispersive power and Cauchy constants of	
	ε.	the material of a prism using	
4		Mercury discharge source.	<u>.</u>
,		SEC Experiment:- Verification and interpretation of truth table for NOR gate Verification and interpretation of truth table for XOR gate	
	1st Sep to	TT 1. A	Aggignment
	15 th Sep	Freshel Diffraction: Freshel's half period zones, zone plate, diffraction at a	Assignment
	15 Sep	straight edge.diffraction at rectangular slit.	. * \$
		DSC Experiment:- To draw a graph between wavelength and minimum deviation for various lines from a	
		Mercury discharge source.	
		SEC Experiment:- Verification and interpretation of truth table for XNOR gate	
		To study and verify NAND gate as a universal gate	
	16 th Sep to	Fraunhoffer diffraction:single slit diffraction,double slit diffraction,Plane	
	30 th Sep	Diffraction grating.limit of resolution, Rayleigh's criterion, resolving power of telescope and a grating.	
	- Сор	DSC Experiment:- Determination of wave length of sodium light and the	
		number of lines per centimetre using a	
tur.		diffraction grating.	
		SEC Experiment:- To study and verify NOR gate as a universal gate	* , =
	1 st Oct to	Design and verification of truth table of Half adder circuit. Unit-3) (I 1 m
		Polarization:Polarisation by reflection, refraction and scattering, Malus	Mid Term
	15 th Oct	Law.Phenomenon of double refraction, Huygens's wave theory of double	Exam
		refraction.Nicol prism.	
	•,	DSC Experiment:- Determination of wave length of sodium light using Newton's Rings.	
		SEC Experiment:- Design and verification of truth table of Full adder circuit.	
		Design and verification of truth table of Half Subtractor circuit.	
	16 th Oct to	Quarter wave plate	
	31 th Oct	and half wave plate, production and detection of (i) Plane polarized	
	31 000	light(ii)Circularly polarized light and (ii)Elliptically polarized light,Optical activity.Fresnel's theory of optical	
		rotation, Specific rotation.	
		DSC Experiment:- Resolving power of a telescope.	
		SEC Experiment:-	
		Design and verification of truth table of Full Subtractor circuit.	
	1st.Nov to	Revision of all syllabus	
	till Exam		

B.Sc 3rd Sem MIC(Life Sci.)Th.

Name of	Period	Topics to be covered	Assignments/
Assistant Professor			Test
LAXMIKANT	Up to 15th	Unit-1	
	Aug	Vcctor background and electric field	w .
		Gradient of a scalar and its physical significance, Line, Surface and Volume integrals of a vector and	
		their physical significance, Flux of a vector field, Divergence	
		and Curl of a vector and their physical significance,	
	16 th Aug	Gauss's divergence theorem, Stoke's theorem. Derivation	
±	to 31 th	ofelectric field from potential	
	Aug	as gradient.Derivation of Laplace and Poisson	
		equations, Electric flux, Gauss's Law. Mechanical	
	1 st Sep to	force of charged surface, Energy per unit volume. Unit-2	A saisanmant
	15 th Sep	Magnetism Magnetic induction, Magnetic flux, Solenoidal	Assignment
	15" Sep	nature of vector field of induction.properties of	
	7	B.(i)V.B=0,(ii)V×B=μJ,Electronic theory of dia and	,
		paramagnetism, Domain theory of	
		ferromagnetism(Langevin's theory), Cycle of Magnetization- Hysteresis loop (Energy dissipation.	
		Hysteresis loss and importance of Hysteresis Curve).	
	16 th Sep to		
	30 th Sep	Electromagnetism	
a.	эо зер	Maxwell equations and their derivations, Displacement	
		current, Vector and Scalar potentials.	
		Boundary conditions at interface between two different	
		media, Propagation of electromagnetic wane (Basic idea, no derivation), Poynting vector and Poynting	
		theorem.	
	1st Oct to	Unit-4	Mid Term
	15 th Oct	A.C.Analysis	Exam
		A.C.circuit analysis using complex variable with (a)Capacitance and Resistance (CR)(b)Resistance	
		and Inductance(LR)	
	16 th Oct to	(c)Capacitance and Inductance	
	31th Oct	(LC)and(d)Capacitance,Inductance and	4
		Resistance (LCR). Series and parallel resonance	-
	151 3.7	circuit,Quality factor (sharpness of resonance).	
-	1 st Nov to	Revision of all Theory syllabus	
	till Exam		
		· ·	

B.Sc 5th Sem(Non Med)Th.+Lab

Name of	Period	Topics to be covered	Assignments/
Assistant Professor			Test
LAXMIKANT	Aug	Nuclear Physics Unit I: Nuclear Structure and Properties of Nuclei Nuclear composition (p-e and p-n hypotheses), Nuclear properties; Nuclear size, spin, parity, statistics, magnetic dipole moment,	
		quadruple moment (shape concept). Determination of mass by Bain-Bridge, Bain-Bridge and Jordan mass spectrograph. Determination of charge by Mosley Law. Determination of size of nuclei by Rutherford Back Scattering, mass and binding energy, systematic of nuclear binding energy, nuclear stability.	
		Experiment:-Study the C E transistor amplifier	
	16th Aug	Unit II: Nuclear Radiation decay Processes	Assignment 1
4.0	to 31 th	Alpha-disintegration and its theory. Energetics of alpha-decay, Origin	
•,	Aug	of continuous beta spectrum (neutrino hypothesis), types of beta- decay and energetics of beta-decay. Nature of gamma rays, Energetics	
		of gamma rays. Radiation interaction	
		Interaction of heavy charged particles (Alpha particles); Energy loss of heavy charged particle (idea of Bethe formula, no derivation), Range and straggling of alpha particles. Geiger-Nuttal law.	
		Interaction of light charged particle (Beta-particle), Energy loss of beta-particles (ionization), Range of electrons, absorption of beta-particles. Interaction of Gamma Ray; Passage of Gamma radiations through matter (Photoelectric, Compton and pair production effect) electron-positron annihilation. Absorption of Gamma rays (Mass	
		attenuation coefficient) and its application. Experiment:-Study the C B transistor amplifier	
	1st Sep to	Unit III: Nuclear Accelerators	
	15 th Sep	Linear accelerator, Tendem accelerator, Cyclotron and Betatron accelerators.	
		Nuclear Radiation Detectors. Gas filled counters; Ionization chamber; proportional counter, G.M. Counter (detailed study), Scintillation counter and semiconductor detector.	
		Experiment:-Study the B H curve using oscilloscope	
	16 th Sep to 30 th Sep	Nuclear reactions.	
		Nuclear reactions, Elastic scattering, Inelastic scattering, Nuclear disintegration, Photonuclear reaction, Radiative capture, Direct reaction, Heavy ion reactions and spallation Reactions. Conservation laws, Q-value and reaction threshold. Nuclear Reactors.	
		Nuclear Reactors, General aspects of Reactor Design. Nuclear fission and fusion reactors, (Principle, construction, working and use).	
	1	Experiment:-Study the Hall effect	

		BOTT I BATT(Out Schlester) Session 2023-20	
		Unit I: Origin quantum physics (Experimental basis)	Test
		Overview, scale of quantum physics, boundary between classical and	
		quantum phenomena, Photon, Photoelectric effect, Compton effect	
ž		(theory and result), Frank- Hertz experiment, de-Broglie hypothesis.	
		Davisson and Germer experiment, G.P. Thomson experiment. Phase	r.
		velocity, group velocity and their relation. Heisenberg's uncertainty	
		principle. Time energy and angular momentum, position uncertainty.	
	, , , , , , , , , , , , , , , , , , ,	Uncertainty principle from de Broglie wave. (Wave-particle duality).	1
		Gamma Ray Microscope, Electron diffraction from a slit. Derivation	-
		of 1-D time-dependent Schrodinger wave equation (subject to force,	
		free particle). Time-independent Schrodinger wave equation, eigen	
		values, eigen functions, wave functions and its significance.	
		Orthogonality and Normalization of function, concept of observer and	<i>***</i>
		operator. Expectation values of dynamical quantities, probability	,*
		current density.	*
		Experiment:-Determine the diameter of a wire using (He-Ne Laser)	
		diffraction method	
	16 th Oct to	Unit II: Application of Schrodinger wave equation:	Assignment 2
	31 th Oct	Free particle in one-dimensional box (solution of Schrodinger wave	-
	31 000	equation, eigen functions, eigen values, quantization of energy and	
1		momentum, nodes and anti nodes, zero point energy). One	
		dimensional step potential E > Vo (Reflection and	
	1 3	Transmission coefficient)One dimensional step potential E < Vo	
4"		(penetration depth calculation). One dimensional potential barrier,	
		E > Vo (Reflection and Transmission coefficient)One-	
		dimensional potential barrier, E < Vo (penetration or tunneling	
		coefficient). Solution of Schrodinger equation for harmonic	
		oscillator (quantization of energy, Zero-point energy, wave	8 9
	1.4	equation for ground state and excited states).	
	1st Nov to	Unit III: Laser Physics -I	
,	15 th Nov	Absorption and emission of radiation, Main features of a laser:	
	,	Directionality, high intensity, high degree of coherence, spatial and	
		temporal coherence, Einstein's coefficients and possibility of	
		amplification, momentum transfer, life time of a level, kinetics of	
		optical absorption ((two and three level rate equation, Fuchbauer landerburg formula).population inversion: A necessary condition for	-
	•	light amplification, resonance cavity, laser pumping, Threshold	
		condition for laser emission, line broadening mechanism,	
		homogeneous and inhomogeneous line broadening (natural, collision	
		and Doppler broadening).	
	1.5th 3.1	Unit IV: Laser Physics – II	Test
	15 th Nov to	He-Ne laser and RUBY laser (Principle, Construction and working),	
Į.	till Exam	Optical properties of semiconductor, Semiconductor laser (Principle,	
	,	Construction and working), Applications of lasers in the field of	
		medicine and industry.	7.
		inequality and inchesty.	·