I.G. GOVT. P.G. COLLEGE, TOHANA

LESSON PLAN OF MATHEMATICS DEPARTMENT SESSION 2025-26(ODD SEM)

Class: BA/B.Sc. (N.M.) Sem-5th

Paper: GROUP AND RINGS Subject: Mathematics Period Topics to be covered Topic of Assignments / MTE to be given to the students 24th July Definition of a group with example and simple properties of groups, Subgroups and 10th August Subgroup criteria, Generation of groups, cyclic groups. 2025. 11th August Cosets, Left and right cosets, Index of a sub-group Coset decomposition, Lagrange's to 25th August Mid term Exam theorem and its consequences. Normal subgroups, Quotient groups. 2025 26th August Homomorphisms, isomorphisms, automorphisms and inner automorphisms of a group. Automorphisms of 10th Sept cyclic groups 2025 11th Sept Permutations groups. Even and odd permutations. Assignment - 4 Alternating groups, Cayley's theorem, Centre of a group 25th Sept and derived group of a group. 2025 26th Sept Introduction to rings, subrings, integral domains and fields, Characteristics of a ring. Ring homomorphisms, ideals (principle, prime and Maximal) 10th Oct 2025 11th Oct Ouotient rings. Field of quotients of an integral domain to 25th Oct 2025

Euclidean rings, Polynomial rings, Polynomials over the

Polynomial rings over commutative rings, Unique

unique factorization domain implies so is R[X1.,

Assignment-2

Asset hit moths

rational field.

X2.....Xn]

The Eisenstein's criterion.

factorization domain, R

4th Nov

to

15th Nov 2025

·16th Nov

to 24th Nov

2025

I.G. GOVT. P.G. COLLEGE, TOHANA

LESSON PLAN OF MATHEMATICS DEPARTMENT SESSION 2025-26(ODD SEM)

Class: MSC Mathematics Sem-III

Paper: Topology

Sub	ject:Mathematics	
		_

	Subject: Mathematics		
Period	` Topics to be covered	Topic of Assignn MTE to be given students	
to 10 th August 2025.	Definition and examples of topological spaces, Neighborhoods, closed sets, closure, Interior, exterior and boundary of a set, Adherent points and Accumulation points, closure of a set as a set of adherent points, derived Base and sub-base for a topology, Neighbourhood system of a point and its properties.		Xam
August to 25 th August 2025	Base for a neighbourhood system, Subspaces and relative topology. First countable, second countable and separable spaces, their relationships and hereditary properties, about countability of a collection of disjoint open sets in a separable and second countable space. Lindelof's theorems. sets, properties of closure operator, dense subsets.		Mid- Term Exam
August to 10 th Sept 2025	Comparison of topologies on a set, about intersection, union, infimum and supremum of a collection of topologies on a set, Definition, examples and characterizations of continuous functions, composition of continuous functions, open and closed functions, homeomorphism.	Assignment	
to 25 th Sept 2025	Separation axioms, To, T1, T2, Regular, T3 spaces, their characterization and hereditary properties, productive properties of Ti and T2 spaces, completely regular and Tychonoff spaces, their hereditary and productive properties.	Assig	
26 th Sept to 10 th Oct 2025	Normal and T4 spaces, normality of a regular Lindelof space, Urysohn's lemma, complete regularity of a regular normal space, Ta implies Tychonoff, Tietze's extension theorem.	1	-
11 th Oct to 25 th Oct 2025	Connected spaces, separation of a topological space, definition of connectedness in terms of separation, characterization of connectedness,		
j			

Asoft by Morthy

4 th Nov to 15 th Nov 2025	connected subsets and their properties. continuity and connectedness, connectedness and product spaces. Compactness: definition and examples of compact spaces and subsets, compactness in terms of finite intersection property,	
	continuity and compact sets, compactness and separation properties, closedness of compact subset and a continuous map from a compact space into a Hausdorff and its consequence, regularity and normality of a compact Hausdorff space	

Asoft Py maths

I.G. GOVT. P.G. COLLEGE, TOHANA

LESSON PLAN OF MATHEMATICS DEPARTMENT SESSION 2025-26(ODD SEM)

Class: MSC Mathematics Sem-I

Paper: Abstract Algebra

Subje	ct:Mat	hematics
-------	--------	----------

Period	Topics to be covered	Topic of Assignm MTE to be give the students	n to
to 10 th August 2025.	Automorphisms and Inner automorphisms of a group G. The groups Aut(G) and Inn(G). Automorphism group of a cyclic group. Normalizer and Centralizer of a nonempty subset of a group G. Conjugate elements and conjugacy classes. Class equation of a finite group G and its applications. Derived group (or a commutator subgroup) of a group G. perfect groups. Simplicity of the Alternating group An (n≥5).		Sxam
to .25 th August .2025	Zassenhaus's Lemma. Normal series and Composition series of a group G. Scheier's refinement theorem. Jordan Holder theorem. Composition series of groups of order p" and of finite Abeliangroups. Cauchy's theorem for finite groups p- groups and for finite abeliangroups. Sylow p-subgroups. Sylow's lst, IInd and IIIrd theorems. Application of Sylow theorems.		Mid -Term Exam
to 10 th Sept 2025	Commutators identities. Commutator subgroups. Three subgroups Lemma of P.Hall. Central series of a group G. Nilpotent groups. Centre of a nilpotent group. Subgroups and factor subgroups of nilpotent groups.	Assignment	
to 25 th Sept 2025	Finite nilpotent groups. Upper and lower central series of a group G and their properties. Subgroups of finitely generated nilpotent groups. Sylow-subgroups of nilpotent groups Solvable groups. Derived series of a group G.		
26 th Sept to 10 th Oct 2025	Modules, submodules and quotient modules. Module generated by a non-empty subset of an R-module. Finitely generated modules and cyclic modules. Idempotents. Homomorphism of R-modules. Fundamental theorem of homomorphism of R-modules.		
11 th Oct to 25 th Oct 2025	Noetherian modules and Noetherian rings. Endomorphism ring of a finite direct sum of modules. Finitely generated modules. Ascending and descending chains of sub modules of an R-module.		

Ast by Maths)

4 th Nov to 15 th Nov 2025	Ascending and Descending chain conditions (A.C.C. and D.C.C.)Finitely co-generated modules. Artinian modules and Artinian rings. Nilpotent elements of a ring R. Nil and nilpotent ideals.	
16 th Nov to 24 th Nov 2025	Hilbert Basis Theorem. Structure theorem for finite Boolean rings. Wedderburn-Artin theorem and its consequences. Uniform modules. Primary modules.	

I.G. GOVT. P.G. COLLEGE, TOHANA LESSON PLAN OF MATHEMATICS DEPARTMENT SESSION 2025-26(ODD SEM) Class: BA Sem-III Paper: Quantitative Aptitude (SEC)

Subject: Mathematica

	Subject: Mathematics	
Period	Topics to be covered	Topic of Assignments / MTE to be given to the students
to 10 th Augus 2025.	Linear Equations, Quadratic equations, System of algebraic equations in two variables and their applications in simple problems.	
to 25 th August 2025	Problems on ages, Clocks. Time and distance: Problems based on trains, Boats and Streams, Pipes and Cistern.	m Exam
26 th August to 10 th Sept 2025	Work and time: Problems on work and time, Work and wagesSimple interest, Compound Interest, Partnership.	Mid- Term Exam
to 25 th Sept 2025	Basic idea of set theory to solve practical problems.	ıment
26 th Sept to 10 th Oct 2025	Trigonometric ratios and identities, Height and distance.	Assignment
11 th Oct to 25 th Oct 2025	Basic idea of Permutations and Combinations.	
4 th Nov to . 15 th Nov 2025	Events and sample space, Probability	
16 th Nov to 24 th Nov 2025	Data interpretation: Raw and grouped data, Bar Graph, Pie Chart, Mean, Median and Mode.	

AseAd Fry Mathy